Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Neurotoxicology ; 97: 101-108, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232294

ABSTRACT

Anxiety-related disorders are among the most important risks for global health, especially in recent years due to the COVID-19 pandemic. Benzodiazepines like diazepam are generally used to treat anxiety disorders, but the overall outcome is not always satisfactory. This is why psychiatrists encourage patients with anxiety to change their lifestyle habits to decrease the risk of anxiety recurrence. However, the effect of diazepam and exercise in combination is unknown. This study aimed to investigate the effect of diazepam alone or in combination with swimming exercise on lipopolysaccharide (LPS)-induced anxiety-like behavior and oxidative stress in the hippocampus and prefrontal cortex of mice. Mice were exposed to diazepam and swimming exercise alone or in combination with each other and then received LPS. We assessed anxiety-like behavior using open field and light-dark box and measured oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) in the hippocampus and prefrontal cortex. The findings showed that LPS increased anxiety-related symptoms and oxidative stress by decreasing GSH and increasing MDA and GSSG levels in the prefrontal cortex but not in the hippocampus. Although diazepam alone did not reduce anxiety-like behavior and oxidative stress, it in combination with exercise significantly decreased anxiety-like behavior and oxidative stress in the prefrontal cortex of LPS-treated mice. This drug and exercise combination also displayed a more effective effect in comparison with exercise alone. Overall, this study suggests that diazepam in combination with swimming exercise has higher efficacy on anxiety-like behavior and oxidative stress than when they are used alone.


Subject(s)
COVID-19 , Lipopolysaccharides , Mice , Animals , Humans , Lipopolysaccharides/toxicity , Glutathione Disulfide , Diazepam/pharmacology , Pandemics , Oxidative Stress , Anxiety/chemically induced , Anxiety/prevention & control , Prefrontal Cortex , Glutathione/metabolism , Hippocampus
2.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: covidwho-2316694

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1ß increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Hypoxia/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
Immun Inflamm Dis ; 11(3): e809, 2023 03.
Article in English | MEDLINE | ID: covidwho-2287510

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a severe and fatal respiratory disease. SIRT6 exerts pivotal activities in the process of lung diseases, but whether SIRT6 impacts ALI has not been covered. METHODS: Lentivirus recombinant expressing vector SIRT6 gene (Lent-SIRT6) was constructed in mice, and there were control, lipopolysaccharide (LPS), LPS + Vehicle, and LPS + Lent SIRT6 groups. RT-qPCR and western blot detected SIRT6 expression in lung tissues. HE staining observed pathological alternations in lung tissues. Wet-to-dry ratio of the lungs was then measured. The cell count of bronchoalveolar lavage fluid (BALF) was evaluated. Serum inflammation was examined with enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot were to measure apoptosis. Western blot tested the expression of ACE2/STAT3/PIM1 signaling-associated factors. At the cellular level, LPS was used to induce lung epithelial cells BEAS-2B to establish cell injury models. SIRT6 was overexpressed and ACE2 expression was inhibited by cell transfection, and the mechanism of SIRT6 in LPS-induced lung injury model was further explored by Cell Counting Kit-8 (CCK-8), western blot, quantitative reverse-transcription polymerase chain reaction, TUNEL, and other techniques. RESULTS: The results of animal experiments showed that SIRT6 overexpression could reduce LPS-induced lung pathological injury, pulmonary edema, and BALF cell ratio and attenuate LPS-induced inflammatory response and cell apoptosis. In the above process, ACE2, STAT3, p-STAT3, and PIM1 expression were affected. In cell experiments, SIRT6 expression was reduced in LPS-induced BEAS-2B cells. Inhibition of ACE2 expression could reverse the inhibitory effect of SIRT6 overexpression on ACE2/STAT3/PIM1 pathway, and cellular inflammatory response and apoptosis. CONCLUSION: SIRT6 eased LPS-evoked inflammation and apoptosis of lung epithelial cells in ALI through ACE2/STAT3/PIM1 signaling.


Subject(s)
Acute Lung Injury , Sirtuins , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Apoptosis , Epithelial Cells/metabolism , Inflammation/genetics , Lipopolysaccharides/toxicity , Lung/pathology , Sirtuins/genetics , Sirtuins/metabolism
4.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2243078

ABSTRACT

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , Mice , Animals , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/metabolism , Lung/diagnostic imaging , Lung/metabolism , Chemokines/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Molecular Imaging , Receptors, Chemokine
5.
Int Immunopharmacol ; 115: 109671, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2170546

ABSTRACT

Acute lung injury (ALI) is characterized by acute systemic inflammatory responses that may lead to severe acute respiratory distress syndrome (ARDS). The clinical course of ALI/ARDS is variable; however, it has been reported that lipopolysaccharides (LPS) play a role in its development. The fragile chromosomal site gene WWOX is highly sensitive to genotoxic stress induced by environmental exposure and is an important candidate gene for exposure-related lung disease research. However, the expression of WWOX and its role in LPS-induced ALI still remain unidentified. This study investigated the expression of WWOX in mouse lung and epithelial cells and explored the role of WWOX in LPS-induced ALI model in vitro and in vivo. In addition, we explored one of the possible mechanisms by which WWOX alleviates ALI from the perspective of autophagy. Here, we observed that LPS stimulation reduced the expression of WWOX and the autophagy marker microtubule-associated protein 1 light chain 3ß-II (MAP1LC3B/LC3B) in mouse lung epithelial and human epithelial (H292) cells. Overexpression of WWOX led to the activation of autophagy and inhibited inflammatory responses in LPS-induced ALI cells and mouse model. More importantly, we found that WWOX interacts with mechanistic target of rapamycin [serine/threonine kinase] (mTOR) and regulates mTOR and ULK-1 signaling-mediated autophagy. Thus, reduced WWOX levels were associated with LPS-induced ALI. WWOX can activate autophagy in lung epithelial cells and protect against LPS-induced ALI, which is partly related to the mTOR-ULK1 signaling pathway.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Mice , Animals , Humans , Lipopolysaccharides/toxicity , TOR Serine-Threonine Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Inflammation/metabolism , Respiratory Distress Syndrome/metabolism , Autophagy , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
6.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2200321

ABSTRACT

Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.


Subject(s)
Acute Lung Injury , Cannabinoids , Pneumonia , Respiratory Distress Syndrome , Sepsis , Mice , Animals , Endotoxins/adverse effects , Microcirculation , Pneumonia/drug therapy , Pneumonia/etiology , Pneumonia/pathology , Inflammation/pathology , Lung/pathology , Cannabinoids/adverse effects , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Cytokines , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Lipopolysaccharides/toxicity , Dexamethasone/adverse effects , Mice, Inbred C57BL
7.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R99-R111, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-2162033

ABSTRACT

A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.


Subject(s)
COVID-19/complications , COVID-19/immunology , Lipopolysaccharides/toxicity , Poly I-C/toxicity , Prenatal Exposure Delayed Effects/immunology , SARS-CoV-2 , Bacterial Infections/immunology , Female , Humans , Pregnancy
8.
J Ethnopharmacol ; 301: 115833, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2131464

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY: The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS: Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS: A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION: This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Signal Transduction , Lung/pathology , Disease Models, Animal
9.
J Ethnopharmacol ; 301: 115763, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2105340

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is one of the fatal complications of respiratory virus infections such as influenza virus and coronavirus, which has high clinical morbidity and mortality. Jinhua Qinggan granules (JHQG) has been approved by China Food and Drug Administration in the treatment of H1N1 influenza and mild or moderate novel coronavirus disease 2019 (COVID-19), which is an herbal formula developed based on Maxingshigan decoction and Yinqiao powder that have been used to respiratory diseases in China for thousands of years. However, the underlying mechanism of JHQG in treating infectious diseases remains unclear. AIM OF THE STUDY: This study investigated the effects of JHQG on neutrophil apoptosis and key signaling pathways in lipopolysaccharide (LPS) -induced ALI mice in order to explore its mechanism of anti-inflammation. MATERIALS AND METHODS: The effect of JHQG on survival rate was observed in septic mouse model by intraperitoneal injection of LPS (20 mg/kg). To better pharmacological evaluation, the mice received an intratracheal injection of 5 mg/kg LPS. Lung histopathological changes, wet-to-dry ratio of the lungs, and MPO activity in the lungs and total protein concentration, total cells number, TNF-α, IL-1ß, IL-6, and MIP-2 levels in BALF were assessed. Neutrophil apoptosis rate was detected by Ly6G-APC/Annexin V-FITC staining. Key proteins associated with apoptosis including caspase 3/7 activity, Bcl-xL and Mcl-1 were measured by flow cytometry and confocal microscope, respectively. TLR4 receptor and its downstream signaling were analyzed by Western blot assay and immunofluorescence, respectively. RESULTS: JHQG treatment at either 6 or 12 g/kg/day resulted in 20% increase of survival in 20 mg/kg LPS-induced mice. In the model of 5 mg/kg LPS-induced mice, JHQG obviously decreased the total protein concentration in BALF, wet-to-dry ratio of the lungs, and lung histological damage. It also attenuated the MPO activity and the proportion of Ly6G staining positive neutrophils in the lungs, as well as the MIP-2 levels in BALF were reduced. JHQG inhibited the expression of Mcl-1 and Bcl-xL and enhanced caspase-3/7 activity, indicating that JHQG partially acted in promoting neutrophil apoptosis via intrinsic mitochondrial apoptotic pathway. The levels of TNF-α, IL-1ß, and IL-6 were significantly declined in LPS-induced mice treated with JHQG. Furthermore, JHQG reduced the protein expression of TLR4, MyD88, p-p65 and the proportion of nuclei p65, suggesting that JHQG treatment inhibited TLR4/MyD88/NF-κB pathway. CONCLUSION: JHQG reduced pulmonary inflammation and protected mice from LPS-induced ALI by promoting neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway, suggesting that JHQG may be a promising drug for treatment of ALI.


Subject(s)
Acute Lung Injury , COVID-19 , Influenza A Virus, H1N1 Subtype , Mice , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/toxicity , Myeloid Differentiation Factor 88/metabolism , Neutrophils , Tumor Necrosis Factor-alpha/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Interleukin-6/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Apoptosis
10.
Physiol Rep ; 10(17): e15451, 2022 09.
Article in English | MEDLINE | ID: covidwho-2025738

ABSTRACT

With a mortality rate of 46% before the onset of COVID-19, acute respiratory distress syndrome (ARDS) affected 200,000 people in the US, causing 75,000 deaths. Mortality rates in COVID-19 ARDS patients are currently at 39%. Extrapulmonary support for ARDS aims to supplement mechanical ventilation by providing life-sustaining oxygen to the patient. A new rapid-onset, human-sized pig ARDS model in a porcine intensive care unit (ICU) was developed. The pigs were nebulized intratracheally with a high dose (4 mg/kg) of the endotoxin lipopolysaccharide (LPS) over a 2 h duration to induce rapid-onset moderate-to-severe ARDS. They were then catheterized to monitor vitals and to evaluate the therapeutic effect of oxygenated microbubble (OMB) therapy delivered by intrathoracic (IT) or intraperitoneal (IP) administration. Post-LPS administration, the PaO2 value dropped below 70 mmHg, the PaO2 /FiO2 ratio dropped below 200 mmHg, and the heart rate increased, indicating rapidly developing (within 4 h) moderate-to-severe ARDS with tachycardia. The SpO2 and PaO2 of these LPS-injured pigs did not show significant improvement after OMB administration, as they did in our previous studies of the therapy on small animal models of ARDS injury. Furthermore, pigs receiving OMB or saline infusions had slightly lower survival than their ARDS counterparts. The OMB administration did not induce a statistically significant or clinically relevant therapeutic effect in this model; instead, both saline and OMB infusion appeared to lower survival rates slightly. This result is significant because it contradicts positive results from our previous small animal studies and places a limit on the efficacy of such treatments for larger animals under more severe respiratory distress. While OMB did not prove efficacious in this rapid-onset ARDS pig model, it may retain potential as a novel therapy for the usual presentation of ARDS in humans, which develops and progresses over days to weeks.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Animals , Humans , Lipopolysaccharides/toxicity , Microbubbles , Respiration, Artificial , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/therapy , Swine
11.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-1997643

ABSTRACT

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Disease Models, Animal , Fibrin/pharmacology , Fibrinogen/therapeutic use , Lipopolysaccharides/toxicity , Lung , Metalloendopeptidases , Mice , Rats , Respiratory Distress Syndrome/drug therapy
12.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1994082

ABSTRACT

Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory-a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent ß-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.


Subject(s)
Endocannabinoids , Monoacylglycerol Lipases , Animals , Endocannabinoids/pharmacology , Hyperalgesia/drug therapy , Lipopolysaccharides/toxicity , Mice , Neuroinflammatory Diseases , Spinal Cord
13.
Adv Exp Med Biol ; 1370: 23-29, 2022.
Article in English | MEDLINE | ID: covidwho-1958872

ABSTRACT

The novel coronavirus disease (COVID-19), which is prevalent in the world, develops severe pneumonia, of which 30% have fatal acute respiratory distress and acute lung injury. At present, there is no established treatment method for ARDS, and it is desired to develop a therapeutic drug as soon as possible. While TauCl has been reported to have anti-inflammatory effects on culture cells, little information is available concerning in vivo experiments. In the present study, we evaluated the anti-inflammatory effect of taurine chloramine (TauCl), a taurine derivative, against LPS-induced pneumonia in mouse. The mice were pretreated with TauCl intraperitoneally before intratracheal administration of LPS. Additionally, we evaluated the effect of taurine treatment by maintaining the mice on drinking water containing 0.5% taurine. Two days after LPS injection, body weight was decreased by 9.5 %, while lung weight was increased due to the infiltration of inflammatory cells; TauCl attenuated the gain in lung weight. LPS-induced acute pneumonia caused an increase in cytokine/chemokine mRNA expression, including that of IL-1ß, -6, -17, TNF-α, and MCP-1. However, TauCl treatment attenuated IL-6 expression, but not that of the others although the induction of plasma IL-6 tended to be reduced by TauCl treatment. Importantly, a similar effect against LPS-induced acute lung inflammation was confirmed by taurine pretreatment. These findings suggest that TauCl treatment partially prevents IL-6 production induced by acute pneumonia in vivo.


Subject(s)
COVID-19 , Lipopolysaccharides , Animals , Anti-Inflammatory Agents , Cells, Cultured , Interleukin-6 , Lipopolysaccharides/toxicity , Mice , Taurine/analogs & derivatives , Taurine/pharmacology , Taurine/therapeutic use
14.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-1736945

ABSTRACT

Disruption of the alveolar-endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10-40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar-endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.


Subject(s)
Acute Lung Injury , NF-kappa B , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cytochromes c/metabolism , Endotoxins/adverse effects , Humans , Lipopolysaccharides/toxicity , Lung/pathology , NF-kappa B/metabolism , Simvastatin/adverse effects , Survivin/genetics , Up-Regulation
15.
Int J Environ Res Public Health ; 19(2)2022 01 12.
Article in English | MEDLINE | ID: covidwho-1637922

ABSTRACT

This study investigated the effects of partial replacement of dietary fat with krill oil (KO) or coconut oil (CO) on dyslipidemia and lipid metabolism in rats fed with a high-fat diet (HFD). Sprague Dawley rats were divided into three groups as follows: HFD, HFD + KO, and HFD + CO. The rats were fed each diet for 10 weeks and then intraperitoneally injected with phosphate-buffered saline (PBS) or lipopolysaccharide (LPS) (1 mg/kg). The KO- and CO-fed rats exhibited lower levels of serum lipids and aspartate aminotransferases than those of the HFD-fed rats. Rats fed with HFD + KO displayed significantly lower hepatic histological scores and hepatic triglyceride (TG) content than rats fed with HFD. The KO supplementation also downregulated the adipogenic gene expression in the liver. When treated with LPS, the HFD + KO and HFD + CO groups reduced the adipocyte size in the epididymal white adipose tissues (EAT) relative to the HFD group. These results suggest that KO and CO could improve lipid metabolism dysfunction.


Subject(s)
Dyslipidemias , Euphausiacea , Animals , Coconut Oil/metabolism , Coconut Oil/pharmacology , Diet, High-Fat/adverse effects , Dietary Fats , Euphausiacea/metabolism , Lipid Metabolism , Lipopolysaccharides/toxicity , Liver , Rats , Rats, Sprague-Dawley
16.
Cell Biol Toxicol ; 38(4): 667-678, 2022 08.
Article in English | MEDLINE | ID: covidwho-1616182

ABSTRACT

INTRODUCTION: The inflammatory potential of SARS-CoV-2 Spike S1 (Spike) has never been tested in human primary macrophages (MΦ). Different recombinant Spikes might display different effects in vitro, according to protein length and glycosylation, and endotoxin (lipopolysaccharide, LPS) contamination. OBJECTIVES: To assess (1) the effects of different Spikes on human primary MΦ inflammation; (2) whether LPS contamination of recombinant Spike is (con)cause in vitro of increased MΦ inflammation. METHODS: Human primary MΦ were incubated in the presence/absence of several different Spikes (10 nM) or graded concentrations of LPS. Pro-inflammatory marker expression (qPCR and ELISA) and supernatant endotoxin contamination (LAL test) were the main readouts. RESULTS: LPS-free, glycosylated Spike (the form expressed in infected humans) caused no inflammation in human primary MΦ. Two (out of five) Spikes were contaminated with endotoxins ≥ 3 EU/ml and triggered inflammation. A non-contaminated non-glycosylated Spike produced in E. coli induced MΦ inflammation. CONCLUSIONS: Glycosylated Spike per se is not pro-inflammatory for human MΦ, a feature which may be crucial to evade the host innate immunity. In vitro studies with commercially available Spike should be conducted with excruciating attention to potential LPS contamination.


Subject(s)
Endotoxins , Macrophages , Spike Glycoprotein, Coronavirus , COVID-19 , Endotoxins/toxicity , Escherichia coli , Glycosylation , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/toxicity , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
17.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580557

ABSTRACT

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Subject(s)
Interleukin-6/metabolism , Lamiaceae/chemistry , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Transcription Factor RelA/metabolism , Animals , Ethanol/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
18.
Int Immunopharmacol ; 101(Pt A): 108264, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487769

ABSTRACT

Topoisomerase (TOP) inhibitors were commonly used as chemotherapeutic agents in the treatment of cancers. In our present study, we found that etoposide (ETO), a topoisomerase 2 (TOP2) inhibitor, upregulated the production of Interleukin 10 (IL-10) in lipopolysaccharide (LPS)-stimulated macrophages. Besides, other TOP2 inhibitors including doxorubicin hydrochloride (DOX) and teniposide (TEN) were also able to augment IL-10 production. Meanwhile, the expression levels of pro-inflammatory factors, for example IL-6 and TNF-α, were also decreased accordingly by the treatment of the TOP2 inhibitors. Of note, ETO facilitated IL-10 secretion, which might be regulated by transcription factor Maf via PI3K/AKT pathway, as pharmaceutic blockage of kinase PI3K or AKT attenuated ETO-induced Maf and IL-10 expression. Further, in LPS-induced mice sepsis model, the enhanced generation of IL-10 was observed in ETO-treated mice, whereas pro-inflammatory cytokines were decreased, which significantly reduced the mortality of mice from LPS-induced lethal cytokine storm. Taken together, these results indicated that ETO may exhibit an anti-inflammatory role by upregulating the alteration of transcription factor Maf and promoting subsequential IL-10 secretion via PI3K/Akt pathway in LPS-induced macrophages. Therefore, ETO may serve as a potential anti-inflammatory agent and employed to severe pro-inflammatory diseases including COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Etoposide/pharmacology , Interleukin-10/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-maf/genetics , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line , Disease Models, Animal , Down-Regulation/drug effects , Etoposide/therapeutic use , Female , Interleukin-10/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-maf/metabolism , Shock, Septic/chemically induced , Shock, Septic/drug therapy , Topoisomerase II Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , COVID-19 Drug Treatment
19.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480798

ABSTRACT

Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.


Subject(s)
Amides/therapeutic use , Blood Coagulation Disorders/drug therapy , Disseminated Intravascular Coagulation/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Sepsis/complications , Amides/chemistry , Amides/pharmacology , Animals , Blood Coagulation Disorders/etiology , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disseminated Intravascular Coagulation/etiology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Fibrin Fibrinogen Degradation Products/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Male , Mast Cells/cytology , Mast Cells/drug effects , Mast Cells/metabolism , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , SARS-CoV-2/isolation & purification , Sepsis/pathology , Serine Proteases/metabolism
20.
J Ethnopharmacol ; 283: 114738, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1466608

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal importance and potential activity of Siddha herbal formulations have proved over several centuries against a wide range of causative agents as Influenza, Dengue, Chikungunya, and Tuberculosis. The traditional medicine system of Siddha is a valuable therapeutic approach for treating viral respiratory infections like Coronavirus disease 2019 (COVID-19) and can be effectively employed to target the host response and preventive care to boost the immune system. Kaba Sura Kudineer (KSK), an official polyherbal formulation has been used in Siddha traditional medicine for centuries. However, the role of KSK in regulating inflammation and the underlying molecular mechanisms has remained elusive. AIM OF THE STUDY: The goal of this study was to evaluate the anti-inflammatory effect of KSK using lipopolysaccharide (LPS) stimulated RAW 264.7 murine macrophage cells. MATERIALS AND METHODS: Raw 264.7 murine macrophage cells were used for this study. The Inflammatory mediators and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The NF-κB nulcear translocation and protein expression of iNOS, COX-2 was analyzed with westernblot. RESULTS: KSK supplementation decreased LPS mediated TLR-4 production and secretion of pro-inflammatory mediators and cytokines including IL-6, TNF-α, COX-2 and PGE-2. Moreover, it inhibited the production of nitric oxide (NO) and thereby inhibited the expression of iNOS in the cell. The Western blot analysis further confirmed that KSK strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB and hereby suppressed nuclear translocation of NF-κB. The protein expression of iNOS, COX-2 was significantly decreased with the presence of KSK treatment. Results suggested that KSK manipulates its anti-inflammatory effects mainly through blocking the TLR mediated NF-κB signal transduction pathways. CONCLUSIONS: Together, this study has proven that KSK could be a potential therapeutic drug for alleviating excessive inflammation in many inflammation-associated diseases like COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Macrophages/drug effects , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Dietary Supplements , Mice , Pharmaceutical Preparations , Phytotherapy , Plant Preparations/pharmacology , RAW 264.7 Cells , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL